Abstract
Low temperature femtosecond-resolved near-field scanning optical microscopy is used to image excitonic spin behavior in locally disordered magnetic semiconductor heterostructures. A contrast between luminescence intensity and polarization profiles yields marked differences between carrier diffusion and spin transport over a spin-dependent energy landscape sharply defined by focused ion beam implantation. Space-time spectroscopies reveal a spin component to the exciton evolution in the presence of a magnetic field. Fundamental limitations on the measurement of circularly polarized luminescence in the near field are also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.