Abstract

2069 Background: Medulloblastoma is the most common malignant childhood tumor type with distinct molecular subgroups. While advances in the comprehensive treatment have been made, the mortality in the high-risk group is still very high, driven by an incomplete understanding of cellular diversity. Methods: We use single-nucleus RNA expression, chromatin accessibility and spatial transcriptomic profiling to generate an integrative multi-omic map in 40 human medulloblastomas spanning all molecular subgroups and human postnatal cerebella, which is supplemented by the bulk whole genome and RNA sequences across 300 cases. Results: This approach provides spatially resolved insights into the medulloblastoma and cerebellum transcriptome and epigenome with identification of distinct cell-type in the tumor microenvironment. Medulloblastoma exhibited three tumor subpopulations including the quiescent, the differentiated, and a stem-like (proliferating) population unique to cancer, which localized to an immunosuppressive-vascular niche. We identified and validated mechanisms of stem-like to differentiated process among the malignant cells that drive tumor progression. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing stem-like malignant cells as a hub for intercellular communication. Multiple features of potential immunosuppression and angiogenesis were observed, including Treg cells and endothelial cells co-localization in compartmentalized tumor stroma. Conclusions: Our study provides an integrative molecular landscape of human medulloblastoma and represents a reference to advance mechanistic and therapeutic studies of pediatric neuro-oncological disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call