Abstract

This research applies a Bayesian multivariate modeling approach to analyze the spatiotemporal patterns of physical disorder, social disorder, property crime, and violent crime at the small‐area scale. Despite crime and disorder exhibiting similar spatiotemporal patterns, as hypothesized by broken windows and collective efficacy theories, past studies often analyze a single outcome and overlook the correlation structures between multiple crime and disorder types. Accounting for five covariates, the best‐fitting model partitions the residual risk of each crime and disorder type into one spatial shared component, one temporal shared component, and type‐specific spatial, temporal, and space–time components. The shared components capture the underlying spatial pattern and time trend common to all types of crime and disorder. Results show that population size, residential mobility, and the central business district are positively associated with all outcomes. The spatial shared component is found to explain the largest proportion of residual variability for all types of crime and disorder. Spatiotemporal hotspots of crime and disorder are examined to contextualize broken windows theory. Applications of multivariate spatiotemporal modeling with shared components to ecological crime theories and crime prevention policy are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.