Abstract

The effective deployment of connected vehicular networks is contingent upon maintaining a desired performance across spatial and temporal domains. In this paper, a graph-based framework, called SMART, is proposed to model and keep track of the spatial and temporal statistics of vehicle-to-infrastructure (V2I) communication latency across a large geographical area. SMART first formulates the spatio-temporal performance of a vehicular network as a graph in which each vertex corresponds to a subregion consisting of a set of neighboring location points with similar statistical features of V2I latency and each edge represents the spatio-correlation between latency statistics of two connected vertices. Motivated by the observation that the complete temporal and spatial latency performance of a vehicular network can be reconstructed from a limited number of vertices and edge relations, we develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm in order to capture the spatial and temporal statistic of feature map pf latency performance for a large-scale vehicular network. Extensive simulations have been conducted based on a five-month latency measurement study on a commercial LTE network. Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and reconstructing the latency performance of large vehicular networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.