Abstract

In this paper, we report the results of the first international contest on mitosis detection in phase-contrast microscopy image sequences (https://www.iti-tju.org/mitosisdetection), which was held at the workshop of computer vision for microscopy image analysis (CVMI) in CVPR 2019. This contest aims to promote research on spatiotemporal mitosis detection under microscopy images. In this contest, we released a large-scale time-lapse phase-contrast microscopy image dataset (C2C12-16) for the mitosis detection task. Compared with the previous popular datasets (e.g., C2C12, C3H10), C2C12-16 contains more annotated mitotic events and more diverse cell culture environments. A total of ten different mitosis detection methods were submitted in the contest and evaluated on the test sets of four different cell culture environments in C2C12-16. In this benchmark, we describe all methods and conduct a thorough analysis based on their performances and discuss a feasible direction for mitosis detection. To the best of our knowledge, this is the first benchmark for the mitosis detection problem using a time-lapse phase-contrast microscopy spatiotemporal image sequence model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.