Abstract

Surface plasmon polariton (SPP) provides an important platform for the design of various nanophotonic devices. However, it is still a big challenge to achieve spatiotemporal manipulation of SPP under both spatially nanoscale and temporally ultrafast conditions. Here, we propose a method of spatiotemporal manipulation of SPP pulse in a plasmonic focusing structure illuminated by a dispersed femtosecond light. Based on dispersion effect of SPP pulse, we achieve the functions of dynamically controlled wavefront rotation in SPP focusing and redirection in SPP propagation within femtosecond range. The influences of structural parameters on the spatiotemporal properties of SPP pulse are numerically studied, and an analytical model is built to explain the results. The spatiotemporal coupling of modulated SPP pulses to dielectric waveguides is also investigated, demonstrating an ultrafast turning of propagation direction. This work has great potential in applications such as on-chip ultrafast photonic information processing, ultrafast beam shaping and attosecond pulse generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call