Abstract

In animal germlines, regulation of cell proliferation and differentiation is particularly important but poorly understood. Here, using a cryo-cut approach, we mapped RNA expression along the Caenorhabditis elegans germline and, using mutants, dissected gene regulatory mechanisms that control spatiotemporal expression. We detected, at near single-cell resolution, >10,000 mRNAs, >300 miRNAs, and numerous unannotated miRNAs. Most RNAs were organized in distinct spatial patterns. Germline-specific miRNAs and their targets were co-localized. Moreover, we observed differential 3' UTR isoform usage for hundreds of mRNAs. In tumorous gld-2 gld-1 mutants, gene expression was strongly perturbed. In particular, differential 3' UTR usage was significantly impaired. We propose that PIE-1, a transcriptional repressor, functions to maintain spatial gene expression. Our data also suggest that cpsf-4 and fipp-1 control differential 3' UTR usage for hundreds of genes. Finally, we constructed a "virtual gonad" enabling "virtual insitu hybridizations" and access to all data (https://shiny.mdc-berlin.de/spacegerm/).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call