Abstract
Possible scenarios of high-intense vortex (and Gaussian) pulsed beam propagation in Kerr media and light bullet (LB) formation conditions are considered. The system of modified nonlinear Schroedinger equation for the complex envelope of the electric field and kinetic equation for the electron plasma density is exploited. Two-scale variational analysis is combined with direct numerical simulations based on finite-difference methods. Hamiltonian approach allows to reveal LB formation conditions. It is shown that the LB parameters correspond to minimum of potential energy when the whole balance of competing processes occurs. Numerical experiment confirms the results obtained on the base of variational analysis, demonstrating at the same time softer conditions for LB formation. It is emphasized that the linear and nonlinear dynamics of spatial and temporal radii obey the coupled oscillator theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.