Abstract

We report the temporal and spatiotemporal stability analyses of antisymmetric, free shear, viscoelastic flows obeying the Oldroyd-B constitutive equation in the limit of low to moderate Reynolds number (Re) and Weissenberg number (We). The resulting fourth-order Orr-Sommerfeld equation is reduced to a set of six auxiliary equations that are numerically integrated starting from the rescaled far-field conditions, i.e., via Compound Matrix Method. The temporal stability analysis indicates that with increasing We, (a) the entire range of the most unstable mode is shifted toward longer waves (i.e., the entire region of temporal instability is gradually concentrated near zero wavenumber), (b) the vorticity structure contours are dilated, and (c) the residual Reynolds stresses are diminished. All these analogous observations previously reported in the inertial limit [J. Azaiez and G. M. Homsy, “Linear stability of free shear flow of viscoelastic liquids,” J. Fluid Mech. 268, 37–69 (1994).] suggest a viscoelastic destabilization mechanism operating at low and moderate Re. The Briggs idea of analytic continuation is deployed to classify regions of temporal stability, absolute and convective instabilities, as well as evanescent modes. The main result is that the free shear flow of dilute polymeric liquids is either (absolutely/convectively) unstable for all Re or the transition to instability occurs at comparatively low Re, a finding attributed to the fact that viscoelasticity aggravates instabilities via shear-induced anisotropy and the slow relaxation effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call