Abstract

Leaf growth dynamics are driven by diel rhythms. The analysis of spatio-temporal leaf growth patterns in Arabidopsis thaliana wild type and mutants of interest is a promising approach to elucidate molecular mechanisms controlling growth. The diel availability of carbohydrates is thought to affect diel growth. A digital image sequence processing (DISP)-based noninvasive technique for visualizing and quantifying highly resolved spatio-temporal leaf growth was adapted for the model plant A. thaliana. Diel growth patterns were analysed for the wild type and for a mutant with altered diel carbohydrate metabolism. A. thaliana leaves showed highest relative growth rates (RGRs) at dawn and lowest RGRs at the beginning of the night. Along the lamina, a clear basipetal gradient of growth rate distribution was found, similar to that in many other dicotyledonous species. The starch-free 1 (stf1) mutant revealed changed temporal growth patterns with reduced nocturnal, and increased afternoon, growth activity. The established DISP technique is presented as a valuable tool to detect altered temporal growth patterns in A. thaliana mutants. Endogenous changes in the diel carbohydrate availability of the starch-free mutant clearly affected its diel growth rhythms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.