Abstract
When a large-scale natural disaster occurs, it is necessary to collect damage information within about 10 minutes so that disaster-relief operations and wide-area support (depending on the the scale of the natural disaster) can be initiated. A high-performance method for "spatio-temporal join" which joins time-series grid data (such as results of simulations of natural disasters like tsunamis and fire spreading after a large-scale earthquake) and time-series point data representing people flows is proposed and applied to estimate damage situations following a natural disaster. The results of a performance evaluation of the method show that the response time for joining 100,000 point data and 250,000 grid data is about 50 seconds. They also show that it is possible to apply the proposed method to a real environment in which it is necessary to join one-million point data and hundreds of thousands of grid data within 10 minutes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.