Abstract
Continuous NO2 profile observations have been made using ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Fukuoka (33.55°N, 130.36°E), an urban area in Japan. Throughout the year, NO2 variations measured by MAX-DOAS (0–100 m) are in good agreement with in situ surface NO2 measurements on several-day, week-to-week, and seasonal timescales. We investigated the spatiotemporal inhomogeneity in NO2 over Fukuoka by observing at two azimuth angles: the Tenjin (towards the city center) and Itoshima (away from the city center) directions. In terms of diurnal variations, NO2 in both directions show clear morning maxima, on account of local emissions in the morning and the development of a boundary layer. The concentrations in the early morning are nearly the same in both directions, but they are higher in the Tenjin direction during most of the daytime on average. Variability in both directions, as well as spatial inhomogeneity, is large during most of the daytime except for in the morning. The diurnal maximum for 0–1 km between 10 and 13 LT is sometimes observed in the Tenjin direction; in some cases, 1 h after this maximum, a maximum is also observed in the Itoshima direction. The NO2 maxima for the upper level (1–2 km) in both directions are also delayed from the maximum in the Tenjin direction for 0–1 km. Analysis of the surface wind field indicates that the NO2 inhomogeneity is strongly related to vertical/horizontal transport of high concentrations of NO2 from the city center, and to horizontal transport of low concentrations from the ocean via a land–sea breeze. Three-dimensional continuous observations by MAX-DOAS are potentially a powerful tool for increasing our understanding of pollutant transport and mixing in urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.