Abstract

PM2.5 is one of the primary air pollutants that affect air quality and threat human health in the port areas. To prevent and control air pollution, it is essential to understand the spatiotemporal distributions of PM2.5 concentrations and their key drivers in ports. 19 coastal ports of China are selected to examine the spatiotemporal distributions of PM2.5 concentrations during 2013–2020. The annual average PM2.5 concentration decreases from 61.03 μg/m3 to 30.17 μg/m3, with an average decrease rate of 51.57%. Significant spatial autocorrelation exists among PM2.5 concentrations of ports. The result of the geographically and temporally weighted regression (GTWR) model shows significant spatiotemporal heterogeneity in the effects of meteorological and socioeconomic factors on PM2.5 concentrations. The effects of boundary layer height on PM2.5 concentrations are found to be negative in most ports, with a stronger effect found in the Pearl River Delta, Yangtze River Delta and some ports of the Bohai Rim Area. The total precipitation shows negative effects on PM2.5 concentrations, with the strongest effect found in ports of the Southeast Coast. The effects of surface pressure on PM2.5 concentrations are positive, with stronger effects found in Beibu Gulf Port and Zhanjiang Port. The effects of wind speed on PM2.5 concentrations generally increase from south to north. Cargo throughput shows strong and positive effects on PM2.5 concentrations in ports of Bohai Rim Area; the positive effects found in Beibu Gulf Port increased from 2013 to 2018 and decreased since 2019. The positive effects of GDP and nighttime light on PM2.5 concentrations gradually decrease and turn negative from south to north. Understandings obtained from this study can potentially support the prevention and control of air pollution in China's coastal ports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.