Abstract

AbstractA high‐speed darkfield microscope has been developed to monitor the rapid rotation of single gold nanorods (AuNRs) and used to study the spatiotemporal heterogeneity of chemical reactions in free solution. A wide range of viscosities from 237 cP to 0.8 cP could be detected conveniently. We studied H2O2 decomposition reactions that were catalyzed by AuNRs coated with Pt nanodots (AuNR@PtNDs) and observed two different rotational states. The two states and their transitions are related to the production and the amalgamation of O2 nanobubbles on the nanorod surface depending on H2O2 concentration. In addition, the local fluidic environment of pure water was found to be non‐uniform in time and space. This technique could be applied to study other chemical and biochemical reactions in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call