Abstract

AbstractThis study investigates the sensitivity of floods to annual precipitation in space and time and evaluates quantitative signs of landscape‐climate coevolution. For that purpose, a spatiotemporal sensitivity analysis is performed at regional scale using data from 804 catchments in Austria from 1976 to 2008. Results show that flood peaks are more responsive to spatial (regional) than to temporal (decadal) variability. Space‐wise a 10% increase in precipitation leads to a 23% increase in flood peaks in Austria, whereas time‐wise a 10% increase in precipitation leads to an increase of just 6% in flood peaks. Catchments from dry lowlands and high wetlands exhibit similarity between the spatial and temporal sensitivities (spatiotemporal symmetry) and low landscape‐climate codependence. This suggests that such regions are not coevolving significantly. However, intermediate regions show differences between those sensitivities (symmetry breaks) and higher landscape‐climate codependence, suggesting undergoing coevolution. A new coevolution index is then proposed relating spatiotemporal symmetry with relative characteristic celerities. The descriptive assessment of coevolution is complemented by a simple dynamical model of landscape‐climate coevolution, in which landform evolution processes take place at the millennial scale (slow dynamics), and climate adjusts in years to decades (fast dynamics). Coevolution is expressed by the interplay between slow and fast dynamics, represented, respectively, by spatial and temporal characteristics. The model captures key features of the joint landscape‐climate distribution, supporting the descriptive assessment. This paper ultimately brings to light that coevolution needs to be taken into account through characteristic celerities in space‐time trading of regional hydrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call