Abstract

Achieving high classification performance in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often entails a large number of channels, which impedes their use in practical applications. Despite the previous efforts, it remains a challenge to determine the optimal subset of channels in a subject-specific manner without heavily compromising the classification performance. In this article, we propose a new method, called spatiotemporal-filtering-based channel selection (STECS), to automatically identify a designated number of discriminative channels by leveraging the spatiotemporal information of the EEG data. In STECS, the channel selection problem is cast under the framework of spatiotemporal filter optimization by incorporating a group sparsity constraints, and a computationally efficient algorithm is developed to solve the optimization problem. The performance of STECS is assessed on three motor imagery EEG datasets. Compared with state-of-the-art spatiotemporal filtering algorithms using full EEG channels, STECS yields comparable classification performance with only half of the channels. Moreover, STECS significantly outperforms the existing channel selection methods. These results suggest that this algorithm holds promise for simplifying BCI setups and facilitating practical utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call