Abstract

Numerosity perception involves a complex cascade of processing stages comprising an early sensory representation stage followed by a later stage providing a conceptual representation of numerical magnitude. While much recent work has focused on understanding how nonnumerical spatial features (e.g., density, area) influence numerosity perception in this processing cascade, little is known about how the spatiotemporal properties of the stimuli affect numerosity processing. Whether numerosity information is integrated over space and time in the processing cascade is an important question as it can provide insights into how the system dedicated for numerosity interacts with other perceptual systems. To address these issues, in four independent experiments, we asked participants to judge the numerosities of various different kinds of dynamically presented dot arrays, such as dots randomly changing in their locations, moving in smooth trajectories, or flickering on and off. The results revealed a systematic overestimation of dynamically presented dot arrays, which implicates the existence of spatiotemporal integration mechanisms, both at the early sensory representation stage and the later conceptual representation stage. The results also revealed the influence of motion and color processing areas on numerosity processing. The findings thus provide empirical evidence that numerosity perception arises from a complex interaction between multiple perceptual mechanisms in the visual stream, and that it is shaped by the integration of spatiotemporal properties of visual stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call