Abstract
Glucocorticoids – commonly known as stress hormones - belong to the family of steroid hormones and regulate numerous life essential physiological processes. As lipophilic molecules, glucocorticoids are known to cross the placental barrier in mammals, which – applied for therapeutic reasons or arising from environmental influences – illustrates the role of prenatal stress during embryonic developmental processes. The hormones employ their functions by binding to the glucocorticoid receptor (GR) and thus are involved in regulating the transcription of thousands of genes. Therefore, the aim of this study was to investigate the spatiotemporal expression pattern of the GR during early embryonic vertebrate development, using the chicken embryo as a model organism. The results should contribute to enhance and expand the current understanding of glucocorticoid signaling. By performing in-situ hybridization on whole mount chicken embryos from stage HH10 to HH29 and analyzing vibratome sections of hybridized embryos, we described the spatiotemporal expression pattern of the GR during early embryogenesis. Moreover, we compared the expression pattern of the GR with other developmental markers such as Pax7, Desmin, MyoD and HNK-1 using double in-situ hybridization and immunohistochemistry. We were able to determine the first emergence of GR expression in stage HH13 of chicken development in the cranial area, especially in the muscle anlagen of the branchial arches and of non-somitic neck muscles. Furthermore, we monitored the extension of GR expression pattern throughout later stages and found transcripts of GR during somitogenesis, limb development, myogenesis, neurulation and neural differentiation and moreover during organogenesis of the gastrointestinal organs, the heart, the kidneys and the lungs. Toward later stages, GR expression transitioned from more distinct areas of expression to an increasingly ubiquitous expression pattern. Our results support the notion of an enormous relevance of glucocorticoid signaling during vertebrate embryonic development and contribute to a better understanding of the consequences of prenatal stress and the clinical administration of prenatal glucocorticoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.