Abstract

Understanding the spatiotemporal evolution and driving mechanisms of landslides following a mega-earthquake at the catchment scale can lead to improved landslide hazard assessment and reduced related risk. However, little effort has been made to undertake such research in the Wenchuan earthquake-affected region, outside Sichuan Province, China. In this study, we used the Goulinping valley in the Bailong River basin in southern Gansu Province, China, as an example. By examining the multitemporal inventory, we revealed various characteristics of the spatiotemporal evolution of landslides over the past 13 years (2007–2020). We evaluated the activity of landslides using multisource remote-sensing technology, analyzed the driving mechanisms of landslides, and further quantified the contribution of landslide evolution to debris flow in the catchment. Our results indicate that the number of landslides increased by nearly six times from 2007 to 2020, and the total volume of landslides approximately doubled. The evolution of landslides in the catchment can be divided into three stages: the earthquake driving stage (2008), the coupled driving stage of earthquake and rainfall (2008–2017), and the rainfall driving stage (2017–present). Landslides in the upstream limestone area were responsive to earthquakes, while the middle–lower loess–phyllite-dominated reaches were mainly controlled by rainfall. Thus, the current landslides in the upstream region remain stable, and those in the mid-downstream are vigorous. Small landslides and mid-downstream slope erosion can rapidly provide abundant debris flow and reduce its threshold, leading to an increase in the frequency and scale of debris flow. This study lays the foundation for studying landslide mechanisms in the Bailong River basin or similar regions. It also aids in engineering management and landslide risk mitigation under seismic activity and climate change conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call