Abstract

We use bright-field imaging in an ultrafast electron microscope to spatiotemporally map the evolution of photoexcited coherent strain waves in a single, micrometer-size flake of MoS2. Following in situ femtosecond photoexcitation, we observe individual wave trains emerge from discrete nanoscale morphological features and propagate in-plane along specific wave vectors at approximately the speed of sound (7 nm/ps). Over the span of several hundred picoseconds, the 50 GHz wave trains (20 ps periods) are observed to undergo phonon-phonon scattering and wave-train interference, resulting in a transition to larger-scale, incoherent structural dynamics. This incoherent motion further evolves into coherent nanomechanical oscillations over a few nanoseconds, ultimately leading to megahertz, whole-flake multimode resonances having microsecond lifetimes. These results provide insight into the low-frequency structural response of MoS2 to relatively coherent optical photoexcitation by elucidating the origin and the evolution of high-velocity, gigahertz strain waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call