Abstract

It is of great significance to explore the dynamic variations in vegetation cover and to identify its driving factors for the restoration and sustainable development of the regional ecological environment. Based on MODIS NDVI data from 2000 to 2020 and contemporaneous meteorological, DEM, land use type, and other data, the spatiotemporal variation characteristics of vegetation in the Greater Khingan Mountains forest-steppe ecotone were deeply analyzed, and its future evolution pattern was predicted by using the methods of Sen+Mann-Kendall trend analysis and Hurst index. At the same time, the influence degree and mechanism of each detection factor and its interaction on vegetation spatial differentiation at the scale of the whole area and different physical geographic divisions were quantitatively revealed by introducing the GeoDetector model. The results showed that:① In terms of spatiotemporal variation, the spatiotemporal heterogeneity of NDVI in the Greater Khingan Mountains forest-steppe ecotone was obvious from 2000 to 2020. Temporally, NDVI fluctuated growth at a rate of 0.002 a-1 (P < 0.05) and underwent an upward mutation in 2011. Spatially, NDVI showed a distribution pattern of "increasing from southwest to northeast," and the NDVI grade transfer was mainly "medium vegetation cover→medium-high vegetation cover" during the 21 years, and the area of vegetation improvement was much larger than that of degradation. ② In terms of trend prediction, the future variation trend of NDVI in the Greater Khingan Mountains forest-steppe ecotone was mainly continuous improvement, accounting for 37%, but was mostly weakly sustained. ③ In terms of driving mechanism, the wind speed, evaporation, and relative humidity had the most significant influence on the spatial differentiation of NDVI over the whole area. The influence of natural factors has been decreasing over the past 21 years, whereas the influence of human factors has been increasing, and the main driving factors of NDVI spatial differentiation were quite different in different vegetation, climate, soil, and geomorphic zones. The synergistic effect between each factor at different spatial scales all showed two-factor or non-linear enhancement relationships, which was significantly enhanced compared with the single-factor effect. This study contributes to clarifying the causes of ecological fragility in the forest-steppe ecotone in the northern cold region and provides scientific support for formulating differentiated protection and management plans for vegetation resources under different environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.