Abstract

As one of the largest inland lakes in China, Dongting Lake has attracted widespread attention owing to its rich natural resources, unique geographical landscape, and important ecological functions. Recently, Dongting Lake has experienced phenomena such as an early dry season and backflow during the flood season. Multi-source remote sensing data and the normalised difference water index (NDWI) threshold method were used to systematically analyse the water area of the lake from 2005 to 2020. Additionally, it employed a centre of gravity migration model and a geographic detector model to investigate the lake's evolution patterns and driving mechanisms. The research identified notable fluctuations in Dongting Lake's water area during this period, with a particularly sharp decline in 2006—from 1509.74 km2 to 815 km2, marking a decrease of 694.74 km2 and a shrinkage rate of 46.01 %. Spatial analysis indicated that the centre of gravity of these water areas changed primarily between Nandashan Town, the Dongting Lake Management Committee, Wanzihu Township, and Qingtan Township, underscoring their significant influence on lake dynamics, including runoff, surface water availability, sediment deposition, and precipitation, all of which displayed strong positive correlations (Pearson coefficients of 0.57, 0.68, and 0.63, respectively), whereas population density showed a negative correlation (Pearson coefficient of −0.56). Furthermore, the study highlighted the substantial impact of the Digital Elevation Model (DEM) and its interaction with slope and aspect on Dongting Lake's evolution, with Q values of 0.537 and 0.543, respectively, emphasising their critical roles in shaping lake area changes and providing a crucial scientific basis for enhancing the understanding and effective management of water resources in the Dongting Lake Basin through comprehensive analysis of its spatiotemporal evolution and driving mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.