Abstract
With the rapid development of China's economy, the process of industrialization and urbanization is accelerating, and environmental pollution is becoming more and more serious. The urban agglomerations (UAs) are the fastest growing economy and are also areas with serious air pollution. Based on the monthly mean PM2.5 concentration data of 20 UAs in China from 2015 to 2019, the spatiotemporal distribution characteristics of PM2.5 were analyzed in UAs. The effects of natural and social factors on PM2.5 concentrations in 20 UAs were quantified using the geographic detector. The results showed that (1) most UAs in China showed the most severe pollution in winter and the least in summer. Seasonal differences were most significant in the Central Henan and Central Shanxi UAs. However, the PM2.5 was highest in March in the central Yunnan UA, and the Harbin-Changchun and mid-southern Liaoning UAs had the highest PM2.5 in October. (2) The highest PM2.5 concentrations were located in northern China, with an overall decreasing trend of pollution. Among them, the Beijing-Tianjin-Hebei, central Shanxi, central Henan, and Shandong Peninsula UAs had the highest concentrations of PM2.5. Although most of the UAs had severe pollution in winter, the central Yunnan, Beibu Gulf, and the West Coast of the Strait UAs had lower PM2.5 concentrations in winter. These areas are mountainous, have high temperatures, and are subject to land and sea breezes, which makes the pollutants more conducive to diffusion. (3) In most UAs, socioeconomic factors such as social electricity consumption, car ownership, and the use of foreign investment are the main factors affecting PM2.5 concentration. However, PM2.5 in Beijing-Tianjin-Hebei and the middle and lower reaches of the Yangtze River are chiefly influenced by natural factors such as temperature and precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.