Abstract

Landscape change is a dynamic feature of landscape structure and function over time which is usually affected by natural and human factors. The evolution of rocky desertification is a typical landscape change that directly affects ecological environment governance and sustainable development. Guizhou is one of the most typical subtropical karst landform areas in the world. Its special karst rocky desertification phenomenon is an important factor affecting the ecological environment and limiting sustainable development. In this paper, remote sensing imagery and machine learning methods are utilized to model and analyze the spatiotemporal variation of rocky desertification in Guizhou. Based on an improved CA-Markov model, rocky desertification scenarios in the next 30 years are predicted, providing data support for exploration of the evolution rule of rocky desertification in subtropical karst areas and for effective management. The specific results are as follows: (1) Based on the dynamic degree, transfer matrix, evolution intensity, and speed, the temporal and spatial evolution of rocky desertification in Guizhou from 2001 to 2020 was analyzed. It was found that the proportion of no rocky desertification (NRD) areas increased from 48.86% to 63.53% over this period. Potential rocky desertification (PRD), light rocky desertification (LRD), middle rocky desertification (MRD), and severe rocky desertification (SRD) continued to improve, with the improvement showing an accelerating trend after 2010. (2) An improved CA-Markov model was used to predict the future rocky desertification scenario; compared to the traditional CA-Markov model, the Lee–Sallee index increased from 0.681 to 0.723, and figure of merit (FOM) increased from 0.459 to 0.530. The conclusions of this paper are as follows: (1) From 2001 to 2020, the evolution speed of PRD was the fastest, while that of SRD was the slowest. Rocky desertification control should not only focus on areas with serious rocky desertification, but also prevent transformation from NRD to PRD. (2) Rocky desertification will continue to improve over the next 30 years. Possible deterioration areas are concentrated in high-altitude areas, such as the south of Bijie and the east of Liupanshui.

Highlights

  • IntroductionRocky desertification landscape change is a dynamic feature of landscape structure and function over time which is usually affected by terrain, climate, and human factors

  • A positive number indicates an increase in the rocky desertification area, while a negative value indicates its decrease

  • A positive value of the dynamic degree indicates growth in the rate, while a negative value indicates a decrease in the rate

Read more

Summary

Introduction

Rocky desertification landscape change is a dynamic feature of landscape structure and function over time which is usually affected by terrain, climate, and human factors. Karst rocky desertification is a surface landscape change similar to desertification, characterized by such features as vegetation degradation, soil erosion, and exposed bedrock, against the background of a fragile karst geology and tropical–subtropical humid or semihumid climate [1,2,3]. It comprises a dynamic land degradation process.

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.