Abstract
Novel Coronavirus pandemic, which negatively affected public health in social, psychological and economical terms, spread to the whole world in a short period of 6 months. However, the rate of increase in cases was not equal for every country. The measures implemented by the countries changed the daily spreading speed of the disease. This was determined by changes in the number of daily cases. In this study, the performance of the Random Forest (RF) machine learning algorithm was investigated in estimating the near future case numbers for 190 countries in the world and it is mapped in comparison with actual confirmed cases results. The number of confirmed cases between 23/01/2020 - 17/06/2020 were divided into 3 main sub-datasets: training sub-data, testing sub-data (interpolation data) and estimating sub-data (extrapolation data) for the random forest model. At the end of the study, it has been found that R2 values for testing sub-data of RF model estimates range between 0.843 and 0.995 (average R2= 0.959), and RMSE values between 141.76 and 526.18 (mean RMSE=259.38); and that R2 values for estimating sub-data range between 0.690 and 0.968 (mean R2=0.914), and RMSE values between 549.73 and 2500.79 (mean RMSE=909.37). These results show that the random forest machine learning algorithm performs well in estimating the number of cases for the near future in case of an epidemic like Novel Coronavirus, which outbreaks suddenly and spreads rapidly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.