Abstract
<p>Extreme precipitation is considered to be one of the natural disasters with greatest impact on human society, leading to floods and debris flows. To better understand the spatio-temporal effects on extreme precipitation, and to predict the intensity of extreme precipitation ahead in different return periods, this study focus on quantifying both climate and spatial effects on the intensity of extreme precipitation in coastal areas of southeast China, considering different weather system. A hierarchical Bayesian model with generalized extreme value distribution (GEV) is applied to maximum daily precipitation through 94 stations in study area from 1964 to 2013 in JAS. Tropical cyclone (TC) and non-TC influenced extreme precipitation are analyzed separately. Climate and spatial effects are introduced through regression models associating parameter values in GEV with different covariates, such as climate indices and distance to coastline. It was observed that SST anomaly in North Pacific, SLP anomaly above North India Ocean are found to be the main climate indices that influence extreme precipitation in coastal areas of southeast China. Using SST, we can predict the intensity of extreme precipitation in different return period at 6-month lag. Extreme precipitation was found to decrease as distance to coastline increase. In addition, different performances of extreme precipitation along with distance to coastline were found among various subregions and weather systems.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.