Abstract
We present multi-scale dynamical simulations of voltage-induced insulator-to-metal transition in the double exchange model, a canonical example of itinerant magnet and correlated electron systems. By combining nonequilibrium Green's function method with large-scale Landau-Lifshitz-Gilbert dynamics, we show that the transition from an antiferromagnetic insulator to the low-resistance state is initiated by the nucleation of a thin ferromagnetic conducting layer at the anode. The metal-insulator interface separating the two phases is then driven toward the opposite electrode by the voltage stress, giving rise to a growing metallic region. We further show that the initial transformation kinetics is well described by the Kolmogorov-Avrami-Ishibashi model with an effective spatial-dimension that depends on the applied voltage. Implications of our findings for the resistive switching in colossal magnetoresistant materials are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.