Abstract
Traction force against the substrate is required for neuronal migration, but how it is generated and regulated remains controversial. Using traction force microscopy, we showed in cultured granule cells the coexistence of three distinct contraction centers (CCs) that are located at the distal and proximal regions of the leading process as well as at the trailing process, regions exhibiting high-level myosin-II activities. The CC activities depended on myosin-II, actin filaments, and microtubules, as well as substrate adhesion, and exhibited apparently independent fluctuation. The difference of strain energies associated with CC activities between leading versus trailing processes tightly correlated with the displacement of the soma at any given time. Application of brain-derived neurotrophic factor (BDNF) and Slit2, factors known to guide neuronal migration, at the leading process altered CC activities by regulating the small GTPases Cdc42 and RhoA, respectively, leading to forward and rearward soma translocation. These results delineate the multiple origins and spatiotemporal dynamics of the traction force underlying neuronal migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.