Abstract

To investigate the proliferation and invasion of a tumor within an inhomogeneous matrix, we studied the spatiotemporal dynamics of two types of growth-diffusion systems (GDSs) with logistic or Allee growth occurring on a two-dimensional square site percolation lattice via numerical computation and finite-size scaling approaches. A critical percolation threshold exists in the two systems, but becomes obscure with an increasing Allee effect in Allee growth. The two systems evidently differ in their short-time spatiotemporal patterns: The tumor number density in the logistic model grows and spreads continuously and subdiffusively or weakly superdiffusively while that in the Allee model does so discretely and strongly superdiffusively. This difference is attributed to a lack of cooperation between sites for growth and diffusion in the logistic model as compared to its Allee counterpart. The Allee growth pattern is characterized by a rougher border and more inhomogeneous interior than its logistic counterpart. Judging from their growth-diffusion feature in combination with a clinical image analysis, we conclude that Allee growth is more suitable for modeling the proliferation and invasion of an early-stage malignant tumor than is logistic growth. A phase diagram that correlates a tumor's growth and diffusion on a percolation lattice with a site occupation fraction and Allee effect was established to reveal the sensitivity on proliferation and spreading of a tumor towards the above parameters. The Allee effect was also found to induce diverse dynamic features on its short-time growth and diffusion in the GDS, which brings in an opposite trend toward a tumor's growth and diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call