Abstract
The appropriate spatial and temporal regulation of canonical Wnt signaling is vital for eye development. However, the literature often conflicts on the distribution of canonical Wnt signaling in the eye. Here, using a sensitive mouse transgenic reporter line, we report a detailed re-evaluation of the spatiotemporal dynamics of canonical Wnt signaling in the developing eye. Canonical Wnt activity was dynamic in the optic vesicle and later in the retina, while it was absent from the ectodermal precursors of the lens and corneal epithelium. However, later in corneal development, canonical Wnt reporter activity was detected in corneal stroma and endothelium precursors as they form from the neural crest, although this was lost around birth. Interestingly, while no canonical Wnt signaling was detected in the corneal limbus or basal cells at any developmental stage, it was robust in adult corneal wing and squamous epithelial cells. While canonical Wnt reporter activity was also absent from the postnatal lens, upon lens injury intended to model cataract surgery, it upregulated within 12 h in remnant lens epithelial cells, and co-localized with alpha smooth muscle actin in fibrotic lens epithelial cells from 48 h post-surgery onward. This pattern correlated with downregulation of the inhibitor of canonical Wnt signaling, Dkk3. These data demonstrate that canonical Wnt signaling is dynamic within the developing eye and upregulates in lens epithelial cells in response to lens injury. As canonical Wnt signaling can collaborate with TGFβ to drive fibrosis in other systems, these data offer the first evidence in a lens-injury model that canonical Wnt may synergize with TGFβ signaling to drive fibrotic posterior capsular opacification (PCO).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.