Abstract

Effect of concurrent alignment and repulsion is studied in the purview of a confined active matter system using a modified force-based Vicsek model. On alteration of the alignment and the repulsive force parameters, a low alignment random phase, a midrange alignment milling phase, and a high alignment oscillatory phase are identified. Based on the particle aggregations, the milling phase is further classified into three subphases, two of which are spatial patterns: one consisting of compact ring-shaped mills and the other incorporating both rings and clusters. A correlation function based on the inner product of spatial velocity fluctuations of the particles shows a high correlation length for the ringed milling and the rings-clusters hybrid milling state. On analyzing temporal velocity fluctuations of particles through chaos detection techniques, low alignment and high alignment states are indicative of chaos, while the middle order alignment is symbolic of periodicity. The extent of synchronization of the particles' motion is analyzed through a Hilbert transform-based mean frequency approach, leading to the detection of a weak chimera state in the case of the spatial structures. The ringed milling state shows a unique category of weak chimera consisting of multiple oscillator groups showcasing different synchronization frequencies coexisting with desynchronized oscillators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.