Abstract

In this paper, we investigate the spatiotemporal dynamics of a diffusive nutrient-phytoplankton model with delayed nutrient recycling. We first study the stability of positive equilibrium and Turing instability induced by diffusion. We then investigate the effect of delay, and it turns out that the value of the rate of recycling k plays an important role in the Hopf bifurcation induced by delay. The delay will and will not induce Hopf bifurcation with low and high level of k, respectively. To reveal the spatiotemporal dynamics, Turing–Hopf bifurcation is carried out, and normal form is derived. Many spatiotemporal dynamics are found, including the coexistence of two stable spatially inhomogeneous periodic solutions or two stable spatially inhomogeneous steadystate solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.