Abstract

In this paper, we study the spatiotemporal dynamics of a diffusive Leslie-type predator–prey system with Beddington–DeAngelis functional response under homogeneous Neumann boundary conditions. Preliminary analysis on the local asymptotic stability and Hopf bifurcation of the spatially homogeneous model based on ordinary differential equations is presented. For the diffusive model, firstly, it is shown that Turing (diffusion-driven) instability occurs which induces spatial inhomogeneous patterns. Next, it is proved that the diffusive model exhibits Hopf bifurcation which produces temporal inhomogeneous patterns. Furthermore, at the points where the Turing instability curve and Hopf bifurcation curve intersect, it is demonstrated that the diffusive model undergoes Turing–Hopf bifurcation and exhibits spatiotemporal patterns. Numerical simulations are also presented to verify the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call