Abstract
Since the electromagnetic field of neural networks is heterogeneous, the diffusion phenomenon of electrons exists inevitably. In this paper, we investigate the existence of Turing–Hopf bifurcation in a reaction–diffusion neural network. By the normal form theory for partial differential equations, we calculate the normal form on the center manifold associated with codimension-two Turing–Hopf bifurcation, which helps us understand and classify the spatiotemporal dynamics close to the Turing–Hopf bifurcation point. Numerical simulations show that the spatiotemporal dynamics in the neighborhood of the bifurcation point can be divided into six cases and spatially inhomogeneous periodic solution appears in one of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.