Abstract
The toxicity of heavy metals is dependent on their bioavailability. This study explored the relationship existing among sedimentary nutrients such as bulk nitrogen (TN) and phosphorus (TP), organic carbon (OC), water column chlorophyll-a (Chl-a) and the poorly-bound fraction of sedimentary heavy metals (Cd, Ni, Zn, Cu, Pb and Cr) in the Dafengjiang River Estuary and adjacent Sanniang bay in 2017 and 2018. Results showed that the texture of the surface sediments was dominated by coarse sand, while sedimentary organic matter was dominated by marine phytoplankton and mariculture biodeposits. Surprisingly, concentrations of poorly-bound heavy metals in sediments were relatively high. The average contents of Cd and Ni did not vary both spatially and temporally, Cu and Pb only varied spatially, Cr varied both spatially and temporally, while Zn only varied temporally. Significant positive correlations occurred between sedimentary TN, TP, and OC, including water column Chl-a and poorly-bound heavy metals in sediments. As sediments are important sources of nutrients for primary productivity, the results of this study suggest that the remobilization of sequestered poorly-bound heavy metals in surface sediments deposited in shallow eutrophic estuaries and coastal waters enriched by labile organic matter can enhance by nutrients. The relationship between the poorly-bound heavy metals and nutrients in surface sediments and water column Chl-a is concerning and requires further in-depth investigation. This is because estuaries are economically important ecosystems rich in bioresources, characterized by dynamic biogeochemical conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.