Abstract

Nitrogen biogeochemistry occupies a central role in nitrogen cycles and exerts a significant influence on primary productivity and global carbon cycles. In order to better understand the nitrogen biogeochemistry in coastal regions, spatiotemporal nitrogen fixation, denitrification and anammox were investigated in the coastal regions of northern Beibu Gulf (NBG), South China Sea (SCS). Nitrogen fixation was mainly detected in the water column of outer bays, attributed to the low nitrate concentration and low N/P (N/P < 16). Comparisons of the nitrogen fixation rates between unicellular (<10 mm) and the filamentous diazotrophs (>10 mm) indicated that the contribution of unicellular diazotrophs was more important than filamentous diazotrophs. Besides, field investigation revealed that Richelia was the dominant species in filamentous diazotrophs. On the other hand, both denitrification and anammox were found in the surface sediment and denitrification dominated the nitrogen loss process. Denitrification was mainly related to the nitrate concentration in pore water and organic matter in the sediment, while anammox was mainly regulated by the concentration of nitrate and nitrite in pore water. Additionally, temperature, dissolved oxygen (DO) and salinity also had an impact on denitrification and anammox. The net areal yield of nitrogen biogeochemical processes was estimated to be −1079t/a, as an important pathway of nitrogen removal. This study adds to the knowledge of nitrogen biogeochemistry in the nutrient-replete coastal region and highlights its significance in such an environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.