Abstract

Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six-year period. The purely spatial scan statistics analysis showed significant spatial clusters of high and low incidence rates; the purely temporal scan statistics showed the temporal cluster with a three-year period from 2009 to 2011 characterized by a high incidence rate; and the space-time scan statistics analysis showed significant spatio-temporal clusters. The distribution of the mean centres (MCs) showed that the general distributions of the NSPRP MCs and NSPTBP MCs were to the east of the incidence rate MCs. Conversely, the general distributions of the RSPRP MCs and the RSPTBP MCs were to the south of the incidence rate MCs. Based on the combined analysis of MC distribution characteristics and trajectory similarities, the NSP trajectory was most similar to the incidence rate trajectory. Thus, more attention should be focused on the discovery of NSP patients in the western part of Beijing, whereas the northern part of Beijing needs intensive treatment for RSP patients.

Highlights

  • Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis [1]

  • The purely spatial scan statistics analysis showed significant spatial clusters of high and low incidence rates; the purely temporal scan statistics showed the temporal cluster with a three-year period from 2009 to 2011 characterized by a high incidence rate; and the space-time scan statistics analysis showed significant spatio-temporal clusters

  • The distribution of the mean centres (MCs) showed that the general distributions of the NSP TB patients in the resident population (NSPRP) MCs and NSPTBP MCs were to the east of the incidence rate MCs

Read more

Summary

Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis [1]. With the development of Geographic Information System (GIS) technology and its application in epidemiology, a new branch of epidemiology called spatial epidemiology has formed. Spatial epidemiology uses spatial information to extend the analysis of epidemic diseases [5]. With the aid of spatial statistics and mapping visualization, spatial epidemiology attempts to describe and analyse the spatial distribution of human diseases, health conditions and latent factors [6,7,8,9,10,11]. Spatial epidemiology explores the spatial distribution model to predict the spatio-temporal trends of disease and the correlation between a disease and its latent factors [12,13,14]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.