Abstract

Freeze–thaw (FT) erosion intensity may exhibit a future increasing trend with climate warming, humidification, and permafrost degradation in the Qinghai–Tibet Plateau (QTP). The present study provides a reference for the prevention and control of FT erosion in the QTP, as well as for the protection and restoration of the regional ecological environment. FT erosion is the third major type of soil erosion after water and wind erosion. Although FT erosion is one of the major soil erosion types in cold regions, it has been studied relatively little in the past because of the complexity of several influencing factors and the involvement of shallow surface layers at certain depths. The QTP is an important ecological barrier area in China. However, this area is characterized by harsh climatic and fragile environmental conditions, as well as by frequent FT erosion events, making it necessary to conduct research on FT erosion. In this paper, a total of 11 meteorological, vegetation, topographic, geomorphological, and geological factors were selected and assigned analytic hierarchy process (AHP)-based weights to evaluate the FT erosion intensity in the QTP using a comprehensive evaluation index method. In addition, the single effects of the selected influencing factors on the FT erosion intensity were further evaluated in this study. According to the obtained results, the total FT erosion area covered 1.61 × 106 km2, accounting for 61.33% of the total area of the QTP. The moderate and strong FT erosion intensity classes covered 6.19 × 105 km2, accounting for 38.37% of the total FT erosion area in the QTP. The results revealed substantial variations in the spatial distribution of the FT erosion intensity in the QTP. Indeed, the moderate and strong erosion areas were mainly located in the high mountain areas and the hilly part of the Hoh Xil frozen soil region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.