Abstract
AbstractSpatio‐temporal disease mapping models are a popular tool to describe the pattern of disease counts. They are usually formulated in a hierarchical Bayesian framework with latent Gaussian model. So far, computationally expensive Markov chain Monte Carlo algorithms have been used for parameter estimation which might induce a large Monte Carlo error. An alternative method using integrated nested Laplace approximations (INLA) has recently been proposed. A major advantage of INLA is that it returns accurate parameter estimates in short computational time. Additionally, the deviance information criterion is provided for Bayesian model choice. This paper describes how several parametric and nonparametric models and extensions thereof can be fitted to space–time count data using INLA. Particular emphasis is given to the appropriate choice of linear constraints to ensure identifiability of the parameter estimates. The models are applied to counts of Salmonellosis in cattle reported to the Swiss Federal Veterinary Office 1991–2008. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.