Abstract

Age-related variations in many regions and/or networks of the human brain have been uncovered using resting-state functional magnetic resonance imaging. However, these findings did not account for the dynamical effect the brain's global activity (global signal [GS]) causes on local characteristics, which is measured by GS topography. To address this gap, we tested GS topography including its correlation with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS topography and its variation with age showed frequency-specific patterns, reflecting the spatiotemporal characteristics of the dynamic change of GS topography with age. A general trend toward dedifferentiation of GS topography with age was observed in both spatial (i.e., less differences of GS between different regions) and temporal (i.e., less differences of GS between different frequencies) dimensions. Further, methodological control analyses suggested that although most age-related dedifferentiation effects remained across different preprocessing strategies, some were triggered by neuro-vascular coupling and physiological noises. Together, these results provide the first evidence for age-related effects on global brain activity and its topographic-dynamic representation in terms of spatiotemporal dedifferentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.