Abstract
Coupled degrees-of-freedom exhibit correspondence, in that their trajectories influence each other. In this paper we add evidence to the hypothesis that spatiotemporal correspondence (STC) of distributed actuators is a component of human-like motion. We demonstrate a method for making robot motion more human-like, by optimizing with respect to a nonlinear STC metric. Quantitative evaluation of STC between coordinated robot motion, human motion capture data, and retargeted human motion capture data projected onto an anthropomorphic robot suggests that coordinating robot motion with respect to the STC metric makes the motion more human-like. A user study based on mimicking shows that STC-optimized motion is (1) more often recognized as a common human motion, (2) more accurately identified as the originally intended motion, and (3) mimicked more accurately than a non-optimized version. We conclude that coordinating robot motion with respect to the STC metric makes the motion more human-like. Finally, we present and discuss data on potential reasons why coordinating motion increases recognition and ability to mimic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.