Abstract

Intense THz sources are expected for further progresses in nonlinear THz science and technology. Liquids like water are durable and continuously-reusable under intense laser irradiation for THz emission though such studies on THz emission from water targets are so far limited. Polarisation fine control of THz emission is demonstrated with a tilted micro-thin water flow by the irradiation of two cross-linearly-polarised femtosecond laser pulses (800nm, 35fs, transform-limited) with spatio-temporal offsets. With an optimized horizontal offset at ∼11 μm between the ∼8 μm focal spots and time delay at 4.7ns, circularly-polarised THz emission is obtained with its intensity enhancement more than 1,500-times if compared with the single pulse irradiation. It is shown that the photon-number-based efficiency from the laser to THz at 7.1 x 10−3 is achieved with the optimisation of the double pulse irradiation. Polarisation-resolved THz time-domain spectroscopy and time-resolved shadowgraphy imaging reveal that the circularly-polarised THz emission originates from the focal volume in front of the water flow. Coupling between a shockwave due to air-breakdown and water ablation-mediated mass transport by the pre-pulse with a laser wake-field along the optical path of the main pulse is responsible for the point-like single-cycle THz emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call