Abstract
Invasion of an exotic species initiated by its local introduction is considered subject to predator–prey interactions and the Allee effect when the prey growth becomes negative for small values of the prey density. Mathematically, the system dynamics is described by two nonlinear diffusion–reaction equations in two spatial dimensions. Regimes of invasion are studied by means of extensive numerical simulations. We show that, in this system, along with well-known scenarios of species spread via propagation of continuous population fronts, there exists an essentially different invasion regime which we call a patchy invasion. In this regime, the species spreads over space via irregular motion and interaction of separate population patches without formation of any continuous front, the population density between the patches being nearly zero. We show that this type of the system dynamics corresponds to spatiotemporal chaos and calculate the dominant Lyapunov exponent. We then show that, surprisingly, in the regime of patchy invasion the spatially average prey density appears to be below the survival threshold. We also show that a variation of parameters can destroy this regime and either restore the usual invasion scenario via propagation of continuous fronts or brings the species to extinction; thus, the patchy spread can be qualified as the invasion at the edge of extinction. Finally, we discuss the implications of this phenomenon for invasive species management and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.