Abstract

The single-shot capability of coherent modulation imaging (CMI) makes it have great potential in the investigation of dynamic processes. Its main disadvantage is the relatively low signal-to-noise ratio (SNR) which affects the spatial resolution and reconstruction accuracy. Here, we propose the improvement of a general spatiotemporal CMI method for imaging of dynamic processes. By making use of the redundant information in time-series reconstructions, the spatiotemporal CMI can achieve robust and fast reconstruction with higher SNR and spatial resolution. The method is validated by numerical simulations and optical experiments. We combine the CMI module with an optical microscope to achieve quantitative phase and amplitude reconstruction of dynamic biological processes. With the reconstructed complex field, we also demonstrate the 3D digital refocusing ability of the CMI microscope. With further development, we expect the spatiotemporal CMI method can be applied to study a range of dynamic phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.