Abstract

The focusing spatiotemporal property of a femtosecond laser pulse is presented under tight focusing conditions by using the frequency-resolved incident electric field and vector diffraction formulas with the wavefront correction term. In the ideal case, the focused laser intensity reaches its maximum at the F-number of ∼0.35 due to the strong diffraction effect under extremely tight focusing conditions. In spatio-temporal coupling distortion cases, their spatiotemporal Strehl ratios show a trend of improvement as the F-number decreases and this phenomenon is mainly concentrated along the y-direction. Based on the numerical calculation method used in this work, the precise information of tightly focused ultra-intense femtosecond laser fields can be obtained, which is crucial for assessing a focused intensity and describing the motion of charged particles under an extremely strong electric field. Moreover, the evolution law of focal fields with spatiotemporal distortions found in this paper can offer some theoretical guidance for realizing ultrahigh laser intensity in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call