Abstract

The excitation of surface plasmons in metallic nanostructures by resonant ultrashort femtosecond light pulses produces interesting phenomena such as optical field nanolocalization, nanoscale electric field enhancement and ultrafast sub-femtosecond beating of the plasmon eigenmodes. Nonlinear two-photon photoemission electron microscopy has proven to be a powerful tool for spatiotemporal characterization of such effects on the nanoscale below the optical diffraction limit. As a step toward using intense, few-cycle 4 femtosecond laser pulses to excite and control surface plasmons, we report on the multiphoton-photoemission electron microscopy experiments on lithographically-fabricated gold nanostructures excited by these few-cycle laser pulses. In addition, the effects of the shape and size of silver plasmonic structures, as well as the polarization of the excitation source are examined in the two-photon photoemission induced by picosecond laser pulses. Potential approaches toward spatiotemporal control of lightfield nanolocalization are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.