Abstract

Background: One of the most concerning pollutants in urban areas across the globe is particulate matter suspended in the Earth’s atmosphere. The main objective of the current investigation is to explore the spatial and temporal patterns of ambient air particles (PM10 and PM2.5) and PM2.5/PM10 ratio in different urban areas of Khuzestan Province. Methods: In this way, the required data were gathered from the environmental protection organization based on hourly mean concentrations of PM10 and PM2.5 of six air pollution-monitoring sites for 5 years. Results: Results indicated that the average concentrations of PM10, PM2.5, and PM2.5/PM10 are about 134.14±39.23 µg/m3, 44.51±13.44 µg/m3 and 0.33±0.07, respectively. The examinations revealed a reductive trend on annual values of PMs in terms of temporal variations. A detailed investigation of the annual mean concentrations of PMs and PM2.5/PM10 in terms of spatial variations demonstrated the largest values for Naderi-Ahvaz and Abadan stations. Furthermore, the measured AQI was larger than 100 and the Exceedance Factor (EF) values of PM10 and PM2.5 ranged between 1.51-2.73 and 0.77-1.41. The statistical analysis obtained from linear regression revealed a significant positive relation between AQI and PM2.5 and PM10 with correlation coefficients (R2) of 0.8259 and 0.7934, respectively. Conclusion: Although the analysis and measurement revealed a reductive trend in the annual mean concentrations of PM2.5 and PM10, the measured AQI and EF values are still far from the standards of good quality and low pollution. Therefore, it is highly necessary to follow the air pollution protocols to control PM air pollution in Khuzestan Province.

Highlights

  • A tmospheric pollution issues have become a severe environmental problem in urban areas of developing countries [1, 2] and many cities in developed countries [3].The high concentration of air pollutants in urban areas is the most serious threat to human health and significantly impacts the ecological environment [4]

  • The findings of several studies have emphasized the significance of the ambient particulate matter and monitoring Particulate Matters (PMs), especially PM10 and PM2.5 that are usually considered for urban air quality monitoring (Lithuania [27], India [10, 28] China [29, 30] Cameroon, Central Africa [2], Iran [31,32,33])

  • The present study aims to investigate the spatial and temporal patterns of ambient air particles (PM2.5 and PM10) in different urban regions of Khuzestan Province and assess the air quality in the investigated areas according to the fine (PM2.5) and inhalable particles (PM10) for the entire study period (2015-2019)

Read more

Summary

Results

Results indicated that the average concentrations of PM10, PM2.5, and PM2.5/PM10 are about 134.14±39.23 μg/m3, 44.51±13.44 μg/m3 and 0.33±0.07, respectively. The examinations revealed a reductive trend on annual values of PMs in terms of temporal variations. A detailed investigation of the annual mean concentrations of PMs and PM2.5/PM10 in terms of spatial variations demonstrated the largest values for Naderi-Ahvaz and Abadan stations. The measured AQI was larger than 100 and the Exceedance Factor (EF) values of PM10 and PM2.5 ranged between 1.51-2.73 and 0.77-1.41. The statistical analysis obtained from linear regression revealed a significant positive relation between AQI and PM2.5 and PM10 with correlation coefficients (R2) of 0.8259 and 0.7934, respectively

Conclusion
Introduction
Materials and Methods
Results and Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.