Abstract

Droughts grow concurrently in space and time; however, their spatiotemporal propagation is still not fully studied. In this study, drought propagation and spatiotemporal characteristics were studied in northern, northeastern, and central Thailand (NNCT). The NNCT is an important agricultural exporter worldwide, and droughts here can lead to considerable pressure on the food supply. This study investigated meteorological drought and soil drought in northern Thailand and identified 70 meteorological drought events and 44 soil drought events over 1948–2014. Severe droughts (droughts with long trivariate return periods) mainly occurred after 1975 and were centered in northern and northeastern Thailand. Meteorological drought and soil drought that occurred during 1979–1980 had the longest trivariate return periods of 157 years and 179 years, respectively. The drought centers were mainly located in the Chao Phraya River basin and the Mun River basin. The mean propagation ratios of all drought parameters (duration, area, severity) were lower than 1, indicating that the underlying surface can serve as a buffer to alleviate water deficits. Most of the probability distribution coefficients and all drought propagation ratios of the three drought parameters were found to change significantly based on a moving-window method, indicating that the drought parameters and propagation from meteorological drought to soil drought were non-stationary. Significant increasing trends were detected in mean values of most drought parameters, ranging from 2.4%/decade to 16.6%/decade. Significant decreasing trends were detected in coefficients of skewness (Cs) of all drought parameters and coefficients of variation (Cv) of most drought parameters, ranging from −3.3 to −12.4%/decade, and from −5.5 to −19.4%/decade, respectively. The propagation ratios of all drought parameters showed significant increasing trends, indicating that the function of the underlying surface as a buffer has become weaker. The drought propagation ratios were found to be positively related to two climate indices, the phase index (PI) and the climate seasonality index (CSI). These findings will help to develop a better understanding and management of water resources in Thailand.

Highlights

  • To take the frequency of drought events into account, we suggest that drought parameters with the same return period be compared instead of drought parameters with the same quantile at the distribution curve

  • Meteorological droughts were affected by climate change, as meteorological drought events are identified from the soilstandard moisture precipitation evapotranspiration index (SPEI) series and determined by local climatic conditions

  • The NNCT is employed as a typical tropical monsoon region to analyze the spatiotemporal characteristics of droughts and their propagation

Read more

Summary

Introduction

Drought is a catastrophic natural disaster that occurs in both wet regions and dry regions worldwide [1]. Droughts have a complex nature, as they involve interactions between climatological and hydrological processes. Droughts are classified into meteorological droughts, soil droughts, and hydrological droughts [2]. Understanding the spatiotemporal characteristics of droughts and their propagation is important for drought management and drought disaster mitigation

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call