Abstract

Research on spatiotemporal characteristics and influencing factors of industrial carbon emissions intensity is crucial to the efforts of reducing carbon emissions. This paper measures the industrial carbon emissions intensity (CI) by energy consumption in Guangdong from 2012 to 2020 and evaluates the regional differences of CI. In addition, we apply the extended STIRPAT (stochastic impacts by regression on population, affluence and technology) and GTWR (geographically and temporally weighted regression) models to reveal the influence of driving factors on CI from spatial–temporal perspectives, based on the economic panel data and night-time light (NTL) data of 21 cities in Guangdong. To show the robustness of the results, we introduce the ordinary least squares (OLS) model, geographically weighted regression (GWR) model and temporally weighted regression (TWR) model compared with the GTWR model and find that the GTWR model outperforms these models. The results are as follows: (1) CI shows an overall downward trend and presents a pattern of being low in the middle and being high on both sides in space. (2) The industrial carbon emission is mainly affected by six main factors: economic development level, population scale, energy intensity, urbanization level, industrial structure and energy consumption structure. Among them, energy intensity occupies a significant position and poses a positive impact on the CI of the industrial sector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call