Abstract

Agricultural production is constrained by farmland and water resources, especially in China with limited per capita resources. Understanding of the geographic changes between national crop production and resource availability with the spatial shift of crop production has been limited in recent decades. To solve this issue, we quantified the changes in geographic relationships between crop production and farmland-water resources in China from 1990 to 2015 by a spatial imbalance measurement model. Results found a clear spatial concentration trend of crop production in China, which increased the pressure on the limited farmland and water resources in the main production areas. The geographic imbalances between the total production of crops and farmland resources (∑SMI_PF) alleviated slightly, whereas that of water resources (∑SMI_PW) increased by 9.12%. The rice production moved toward the north of the country with less water but abundant farmland resources, which led to a decrease of 1.34% in ∑SMI_PF and an increase of 14.20% in ∑SMI_PW. The shift of wheat production to the south was conducive to alleviating the pressure on water resources, but the production concentration still increased the demand for farmland and water resources, resulting in an increase in ∑SMI_PF and ∑SMI_PW by 39.96% and 10.01%, respectively. Of the five crops, adjustments to the spatial distribution of corn production had the most significant effect on reducing pressure on farmland and water resources and ∑SMI_PF and ∑SMI_PW decreased by 11.23% and 1.43%, respectively. Our results provided a reference for adjustments in crop production distribution and for policy formulation to sustainably utilize farmland and water resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call